

222 Vista Ave.
Pasadena, CA 91107
+1(626)795-2220
www.kmioss.com
oss@kmi.com

PROJECT BRIEF

OASIS BUILDINGS

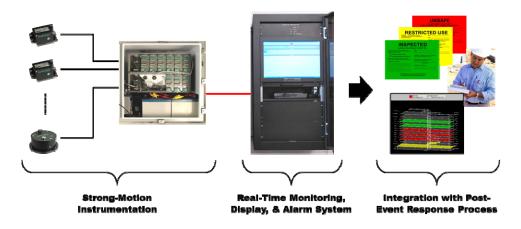
ONLINE ALERTING OF STRUCTURAL INTEGRITY AND SAFETY

PROJECT OBJECTIVE

OASIS systems provide information towards enabling rapid post-event assessment of critical and essential structures that cannot easily evacuate or sustain expensive downtime waiting for a qualified safety inspection following a significant earthquake.

PROJECT ACHIEVMENTS

Beginning in 2006, six critical or essential buildings along the United States West Coast were equipped with permanent seismic monitoring systems as part of an enhanced post-earthquake assessment and inspection service offered from leading engineering consulting companies.


OASIS BUILDINGS

Overview

Occupants in essential facilities such as hospitals, emergency operations centers, strategic military installations, critical financial institutions, and nuclear power plants, cannot easily evacuate immediately after an earthquake and wait for a detailed safety assessment to reoccupy the facility and resume operations. Hospitals and medical facilities, in particular, have a profound need to maintain building operational status and function in the aftermath of strong earthquakes to allow continued care for current patients and also to receive new patients injured by the disaster. A proactive solution to performing rapid, detailed, and accurate post-disaster safety evaluations of these facilities is needed.

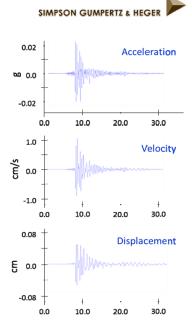
Post-earthquake safety standards and response programs not only benefit building owners and municipality officials, they help to create new and proactive solutions for performing rapid and accurate post-disaster safety evaluations.

San Francisco, for example, and several other forward-thinking jurisdictions established Building Occupancy Resumption Programs (BORP) that permit the building's "engineer-on-call" to be predeputized to perform ATC-20, Post-earthquake Building Safety Evaluation Procedures; Red/Yellow/Green building tagging in lieu of official inspectors.

OASIS system overview illustrating strong-motion instrumentation (sensors and data loggers), real-time user interface and alarm system, and information integration into

Traditional visual-based post-earthquake inspections can impose high costs and inconvenience on building owners and occupants alike. For example, physical access to structural members usually requires the removal of non-structural components such as interior partitions and fire proofing. The post-earthquake detailed inspection requirements of welded steel moment frame buildings with pre-Northridge Earthquake style connections can be especially time consuming and costly to implement. Prolonging expensive downtime, limited resources such as qualified inspectors may not be immediately available after a damaging event, especially for dense urban areas.

Beginning in 2006, several buildings along the United States West Coast were equipped with permanent seismic monitoring systems as part of an enhanced post-earthquake assessment and inspection service offered to building owners from leading engineering consulting companies. The primary goal of these systems is to provide useful information to the post-earthquake inspection and recovery process by enhancing the traditional visual-based inspection process in terms of both speed and quality.


Critical Financial Institution

Downtime of critical financial institutions can be extremely costly to the tenant institution and its customers. One company with its headquarters in Downtown San Francisco has opted to minimize its potential downtime by implementing an enhanced BORP compliant program with seismic monitoring system.

As part of this project, two separate buildings were instrumented; one consisting of a 31 channel system, the other with a 42 channel system. The larger system is installed in a building with two structures seismically isolated by an expansion joint. Although

separate data acquisition systems are used for each structure, all data and results are available and displayed in a single OASIS PC.

On October 20, 2011, this particular system captured responses to two small earthquakes of M4.0 and M3.8 with epicenters near Berkeley approximately 10 miles away. The figure on the right displays an example of data from the event files provided immediately by the OASIS system.

Caltrans District 4 Headquarters

Degenkolb Engineers designed a seismic retrofit scheme for this 15 story steel moment-resisting frame constructed in 1991 and located in Oakland, California. The building is the headquarters for Caltrans District 4 and houses the Transportation Management Center for the San Francisco Bay Area. Previous

testing indicated that the welded connections were vulnerable to fracture, and consequently the building presented a risk to life safety in the event of a major earthquake.

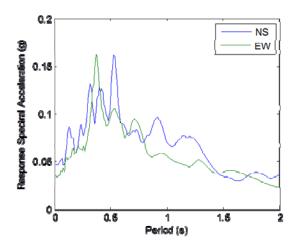
After considering several retrofitting schemes, one that included strengthening some existing connections and adding viscous dampers was selected. To meet the seismic performance requirements of the State of California, Department of General Services this scheme reduced interstory drifts to 1.8% in a 475-year return period event.

Non-linear time history analyses were performed to verify the performance of the retrofitted structure. Full scale connection testing and detailed finite element analyses were also performed to verify the deformation capacity of the proposed retrofit details. The extra steps taken beyond typical engineering practices were intended to provide better assurance that the project's performance goals would be met during the design basis seismic event.

As part of the project, Caltrans elected to install a 36 channel seismic monitoring system to provide improved post-earthquake inspection and recovery process. The system includes an onsite OASIS monitoring system that is remotely monitored in real-time by Degenkolb Engineers from both the nearby Oakland office and the Portland, Oregon office. This increases the likelihood that event data from the building can be evaluated shortly after an event while inspecting engineers are in transit to the building.

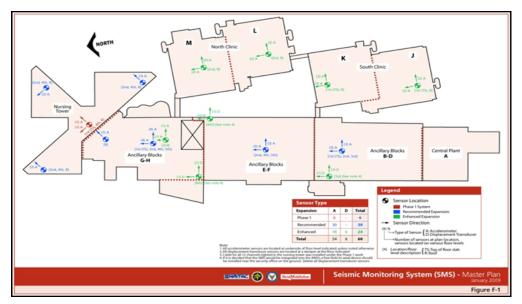
The monitoring system is an integral part of the post-earthquake response process that includes provision for the three phases of response described in Enhanced Rapid Post-Event Assessment Service document on http://www.kmioss.com. As part of this process Degenkolb Engineers is contracted to monitor the system, and to perform post-earthquake building inspections. A comprehensive post-earthquake inspection manual was developed which integrates the monitoring system into the overall response process.

Results from the analysis performed as part of the retrofit project were used to set the drift performance limits. The alarms are intended to provide direction on what floors have experienced the highest levels of demand. The overall alarm level for the building will be triggered if three or more drift measurements are above the alarm thresholds described in the Table below.


N/A	Not Triggered	No Action	
0.1%	Noticeable building movement	Perform remote evaluation	
0.5%	Expected threshold for fracture of some unretrofitted pre-Northridge connections	In conjunction with other triggers activate the engineering inspection of the building	
2.0%	Expected threshold for damage to the primary lateral system	Evacuation not triggered automatically but may occur after remote review of data	

US NAVY Hospitals

As early as 2002, the US Navy developed and deployed building-specific postearthquake evaluation plans utilizing seismic instrumentation to facilitate rapid and accurate post-earthquake evaluations of several of their essential medical facilities.


Since then this program has evolved in to the Rapid Evaluation and Assessment Program (REAP). This program utilizes facility-specific inspection criteria and seismic monitoring systems to provide occupants of these essential facilities post-disaster inspection tools that can be used to perform fast, accurate and detailed building safety evaluations. Combining the principals of Performance Based Earthquake Engineering (PBEE), known drift limit states of various building materials and structural systems,

and the Post-Earthquake Safety Evaluations of Buildings (ATC-20) standard of care, the REAP utilizes a Seismic Monitoring System (SMS) to help facility managers quickly and accurately evaluate the post-disaster safety of these important facilities. This innovative post-disaster safety assessment program has been deployed at the three of the US Navy's West Coast based healthcare facilities: Naval Hospital Bremerton (NHB), Naval Medical Center San Diego (NMCSD), and Naval Hospital Twentynine Palms (NHTP). NMCSD is the world's largest military medical facility.

As part of their design of seismic upgrades to the 6-story, 1.2 million square-foot NMCSD facility, Reid Middleton developed and deployed the REAP and SMS for this essential facility. The SMS consists of an initial phase of 36 channels of real-time seismic monitoring with a full build out of 60 channels when the program is fully deployed. The Kinemetrics OASIS system was utilized in this project. The REAP makes use of the SMS to measure earthquake performance of the facility and provide real-time feedback to the post-disaster inspection team.

The map details sensor locations, types and number of sensors placed in a particular section of the structure.

OASIS System Experience

The following is a selection of important projects carried out over the last two decades using the OASIS Concept Solution for structural monitoring, in general, as well as dynamic structural monitoring, structural health monitoring, seismic monitoring or post earthquake assessment applications in particular.

2011	Critical Financial Institution Post Earthquake Occupancy Resumption Assessment & Monitoring System Freemont, California, USA	2007	University of Porto Bridge INFANTE D HENRIQUE Structural Health Monitoring System Portugal
2010	ArcelorMittal - Lazaro Cardenas, Michoacan Metallurgy Plant Post Earthquake Assessment & Seismic Monitoring System Mexico	2007	United States Geological Survey – Menlo Park US Federal Building San Francisco High-Resolution, Real-Time, Seismic Monitoring California, USA
2009	United States Geological Survey – Menlo Park Multiple VA Hospital Buildings Post Earthquake Occupancy Resumption As- sessment & Monitoring System USA	2006	Critical Financial Institution Post Earthquake Occupancy Resumption Assessment & Monitoring System San Francisco, California, USA
2009	Catholic Healthcare West Marian Medical Center, Santa Maria Post Earthquake Occupancy Resumption Assessment & Monitoring System California, USA	2004	US Federal Highway Administration Cape Girardeau Bridge High-Resolution, Real-Time, Seismic Monitoring Missouri, USA
2009	Naval Facilities Engineering Command Northwest (NAVFAC NW) Naval Hospital Bremerton, Washington Post Earthquake Occupancy Resumption Assessment & Monitoring System Washington, USA	1999	Suez Canal Seismic Monitoring System Egypt
2008	Naval Facilities Engineering Command Northwest (NAVFAC NW) Naval Medical Center San Diego Post Earthquake Occupancy Resumption Assessment & Monitoring System California, USA	1999	Bangkok Peninsula Hotel Displacement Monitoring System Thailand
2008	California Department of Transportation - CALTRANS District 4 Headquarters Building Post Earthquake Occupancy Resumption Assessment & Monitoring System California, USA	1996	The Ministry of Construction and Transportation (MOCT) NAMHAE Great Bridge Dynamic Monitoring System Republic of Korea
2007	Universidad Autónoma de México - UNAM Institute of Engineering Portable Structural Monitoring System Mexico	1994	The Expressway and Rapid Tran sit Authority of Thailand (ETA) Bangkok RAMA IX Bridge OASIS Real-Time Monitoring System Thailand

Kinemetrics Inc.
Open Systems & Services
222 Vista Avenue
Pasadena, CA 91107
PH: 626.795.2220
www.kmioss.com
oss@kmi.com